○商功(以御功程积实)
今有穿地,积一万尺。龙腾小说网 Ltxsfb.com问为坚、壤各几何?答曰:为坚七千五百尺;为壤一
万二千五百尺。
术曰:穿地四为壤五,
〔壤谓息土。〕
为坚三,
〔坚谓筑土。〕
为墟四。
〔墟谓穿坑。此皆其常率。〕
以穿地求壤,五之;求坚,三之;皆四而一。
〔今有术也。〕
以壤求穿,四之;求坚,三之;皆五而一。以坚求穿,四之;求壤,五之;
皆三而一。
〔淳风等按:此术并今有之义也。重张穿地积一万尺,为所有数,坚率三、
壤率五各为所求率,穿率四为所有率,而今有之,即得。〕
城、垣、堤、沟、堑、渠皆同术。
术曰:并上下广而半之,
〔损广补狭。〕
以高若深乘之,又以袤乘之,即积尺。
〔按:此术“并上下广而半之”者,以盈补虚,得中平之广。“以高若深乘
之”,得一头之立幂。“又以袤乘之”者,得立实之积,故为积尺。〕
今有穿地,袤一丈六尺,深一丈,上广六尺,为垣积五百七十六尺。问穿地
下广几何?答曰:三尺五分尺之三。
术曰:置垣积尺,四之为实。
〔穿地四,为坚三。垣,坚也。以坚求穿地,当四之,三而一也。〕
以深、袤相乘,
〔为深、袤之立实也。〕
又三之,为法。
〔以深、袤乘之立实除垣积,即坑广。又三之者,与坚率并除之。〕
所得,倍之。
〔为坑有两广,先并而半之,即为广狭之中平。今先得其中平,故又倍之知,
两广全也。〕
减上广,余即下广。
〔按:此术穿地四,为坚三。垣即坚也。今以坚求穿地,当四乘之,三而一。
深、袤相乘者,为深袤立幂。以深袤立幂除积,即坑广。又三之,为法,与坚率
并除。所得,倍之者,为坑有两广,先并而半之,为中平之广。今此得中平之广,
故倍之还为两广并。故减上广,余即下广也。〕
今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺。问积几何?答
曰:一百八十九万七千五百尺:
今有垣下广三尺,上广二尺,高一丈二尺,袤二十二丈五尺八寸。问积几何?
答曰:六千七百七十四尺。
今有堤下广二丈,上广八尺,高四尺,袤一十二丈七尺。问积几何?答曰:
七千一百一十二尺。
冬程人功四百四十四尺,问用徒几何?答曰:一十六人二百一十一分人之二。
术曰:以积尺为实,程功尺数为法,实如法而一,即用徒人数。
今有沟,上广一丈五尺,下广一丈,深五尺,袤七丈。问积几何?答曰:四
千三百七十五尺。
春程人功七百六十六尺,并出土功五分之一,定功六百一十二尺五分尺之四。
问用徒几何?答曰:七人三千六十四分人之四百二十七。
术曰:置本人功,去其五分之一,余为法。
〔“去其五分之一”者,谓以四乘,五除也。〕
以沟积尺为实,实如法而一,得用徒人数。
〔按:此术“置本人功,去其五分之一”者,谓以四乘之,五而一,除去出
土之功,取其定功。乃通分内子以为法。以分母乘沟积尺为实者,法里有分,实
里通之,故实如法而一,即用徒人数。此以一人之积尺除其众尺,故用徒人数。
不尽者,等数约之而命分也。〕
今有堑,上广一丈六尺三寸,下广一丈,深六尺三寸,袤一十三丈二尺一寸。
问积几何?答曰:一万九百四十三尺八寸。
〔八寸者,谓穿地方尺,深八寸。此积余有方尺中二分四厘五毫,弃之。文
欲从易,非其常定也。〕
夏程人功八百七十一尺,并出土功五分之一,沙砾水石之功作太半,定功二
百三十二尺一十五分尺之四。问用徒几何?答曰:四十七人三千四百八十四分人
之四百九。
术曰:置本人功,去其出土功五分之一,又去沙砾水石之功太半,余为法。
以堑积尺为实。实如法而一,即用徒人数。
〔按:此术“置本人功,去其出土功五分之一”者,谓以四乘,五除。“又
去沙砾水石作太半”者,一乘,三除,存其少半,取其定功。乃通分内子以为法。
以分母乘堑积尺为实者,为法里有分,实里通之,故实如法而一,即用徒人数。
不尽者,等数约之而命分也。〕
今有穿渠,上广一丈八尺,下广三尺六寸,深一丈八尺,袤五万一千八百二
十四尺。问积几何?答曰:一千七万四千五百八十五尺六寸。
秋程人功三百尺,问用徒几何?答曰:三万三千五百八十二人,功内少一十
四尺四寸。
一千人先到,问当受袤几何?答曰:一百五十四丈三尺二寸八十一分寸之八。
术曰:以一人功尺数乘先到人数为实。
〔以一千人一日功为实。立实为功。〕
并渠上下广而半之,以深乘之,为法。
〔以渠广深之立实为法。〕
实如法得袤尺。
今有方堡壔,
〔堡者,堡城也;壔,音丁老反,又音纛,谓以土拥木也。〕
方一丈六尺,高一丈五尺。问积几何?答曰:三千八百四十尺。
术曰:方自乘,以高乘之,即积尺。
今有圆堡瑽,周四丈八尺,高一丈一尺。问积几何?答曰:二千一百一十二
尺。
〔于徽术,当积二千一十七尺一百五十七分尺之一百三十一。
淳风等按:依密率,积二千一十六尺。〕
术曰:周自相乘,以高乘之,十二而一。
〔此章诸术亦以周三径一为率,皆非也。于徽术当以周自乘,以高乘之,又
以二十五乘之,三百一十四而一。此之圆幂亦如圆田之幂也。求幂亦如圆田,而
以高乘幂也。
淳风等按:依密率,以七乘之,八十八而一。〕
今有方亭,下方五丈,上方四丈,高五丈。问积几何?答曰:一十万一千六
百六十六尺太半尺。
术曰:上下方相乘,又各自乘,并之,以高乘之,三而一。
〔此章有堑堵、阳马,皆合而成立方。盖说算者乃立棋三品,以效高深之积。
假令方亭,上方一尺,下方三尺,高一尺。其用棋也,中央立方一,四面堑堵四,
四角阳马四。上下方相乘为三尺,以高乘之,得积三尺,是为得中央立方一,四
面堑堵各一。下方自乘为九,以高乘之,得积九尺。是为中央立方一、四面堑堵
各二、四角阳马各三也。上方自乘,以高乘之,得积一尺,又为中央立方一